Сократительная функция

Функции белков в организме | Химия онлайн

Сократительная функция

Функции белков в природе универсальны. Белки входят в состав всех живых организмов. Мышцы, кости, покровные ткани, внутренние органы, хрящи, шерсть, кровь — все это белковые вещества.

Растения синтезируют белки из углекислого газа и воды за счет фотосинтеза. Животные организмы получают, в основном, готовые аминокислоты с пищей и на их базе строят белки своего организма.

Ни один из известных нам живых организмов не обходится без белков.

Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

фильм«Функции белков»

Разнообразные функции белков определяются a-аминокислотным составом и строением их высокоорганизованных макромолекул.

1. Каталитическая (ферментативная) функция

Каталитическая функция — одна из основных функций белков. Абсолютно все биохимические процессы в организме протекают в присутствии катализаторов – ферментов. Все известные ферменты представляют собой белковые молекулы.

Белки – это очень мощные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой фермент.

В настоящее время известно свыше 2000 различных ферментов, которые являются биологическими катализаторами.

Например, фермент пепсин расщепляет белки в процессе пищеварения.

Даже такая простая реакция как гидратация углекислого газа катализируется ферментом карбоангидразой.

Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации ДНК и матричного синтеза РНК.

2. Транспортная функция 

Некоторые белки способны присоединять и переносить (транспортировать) различные вещества по крови от одного органа к другому и в пределах клетки.

Белки транспортируют липиды (липопротеиды), углеводы (гликопротеиды), ионы металлов (глобулины), кислород и углекислый газ (гемоглобин), некоторые витамины, гормоны и др.

Например, альбумины крови транспортируют липиды и высшие жирные кислоты (ВЖК), лекарственные вещества, билирубин.

Белок эритроцитов крови гемоглобин соединяется в легких с кислородом, превращаясь в оксигемоглобин. Достигая с током крови органов и тканей, оксигемоглобин расщепляется и отдает кислород, необходимый для обеспечения окислительных процессов в тканях.

Белок миоглобин запасает кислород в мышцах.

Специфические белки-переносчики обеспечивают проникновение минеральных веществ и витаминов через мембраны клеток и субклеточных структур.

3. Защитная функция 

Защитную функцию выполняют специфические белки (антитела — иммуноглобулины), которые вырабатываются иммунной системой организма. Они обеспечивают физическую, химическую и иммунную защиту организма путем связывания и обезвреживания веществ, поступающих в организм или появляющихся в результате жизнедеятельности бактерий и вирусов.

Например, белок плазмы крови фибриноген участвует в свертывании крови (образовывает сгусток). Это защищает организм от потери крови при ранениях.

Альбумины обезвреживают ядовитые вещества (ВЖК и билирубин) в крови.

Антитела, вырабатываемые лимфоцитами, блокируют чужеродные белки. Интерфероны — универсальные противовирусные белки.

Многие живые существа для обеспечения защиты выделяют белки, называемые токсинами, которые в большинстве случаев являются сильными ядами. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.

4. Сократительная (двигательная) функция

Важным признаком жизни является подвижность, в основе которой лежит данная функция белков, таких как актин и миозин – белки мышц. Кроме мышечных сокращений к этой функции относят изменение форм клеток и субклеточных частиц.

B результате взаимодействия белков происходит передвижение в пространстве, сокращение и расслабление сердца, движение других внутренних органов.

5. Структурная функция

Структурная функция — одна из важнейших функций белков. Белки играют большую роль в формировании всех клеточных структур.

Белки – это строительный материал клеток. Из них построены опорные, мышечные, покровные ткани.

Некоторые из них (коллаген соединительной ткани, кератин волос, ногтей, эластин стенок кровеносных сосудов, фиброин шелка и др.) выполняют почти исключительно структурную функцию.

Кератин синтезируется кожей. Волосы и ногти – это производные кожи.

В комплексе с липидами белки участвуют в построении мембран клеток и внутриклеточных образований.

6. Гормональная (регуляторная) функция 

Регуляторная функция присуща белкам-гормонам (регуляторам). Они регулируют различные физиологические процессы.

Например, наиболее известным гормоном является инсулин, регулирующий содержание глюкозы в крови. При недостатке инсулина в организме возникает заболевание, известное как сахарный диабет.

 Интересно знать!

В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

7. Питательная (запасная) функция

Питательная функция осуществляется резервными белками, которые запасаются в качестве источника энергии и вещества.

Например: казеин, яичный альбумин, белки яйца обеспечивают рост  и развитие плода, а белки молока служат источником питания для новорожденного.

8. Рецепторная (сигнальная) функция

Некоторые белки (белки-рецепторы), встроенные в клеточную мембрану, способны изменять свою структуру под воздействием внешней среды. Так происходит прием сигналов извне и передача информации в клетку.

Например, действие света на сетчатку глаза воспринимается фоторецептором родопсином.

Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

 9. Энергетическая функция

Белки могут выполнять энергетическую функцию, являясь одним из источников энергии в клетке (после их гидролиза). Обычно белки расходуются на энергетические нужды в крайних случаях, когда исчерпаны запасы углеводов и жиров.

При полном расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии. Но в качестве источника энергии белки используются крайне редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.

Белки

Источник: https://himija-online.ru/organicheskaya-ximiya/belki/funkcii-belkov-v-organizme.html

Функции белков

Сократительная функция

Белки выполняют множество самых разнообразных функций, характерных для живых организмов, с некоторыми из которых мы познакомимся более подробно при дальнейшем изучении курса. Ниже рассматриваются главные и в некотором смысле уникальные биологические функции белков, несвойственные или лишь частично присущие другим классам биополимеров.

Каталитическая функция. К 1995 г. было идентифицировано более 3400 ферментов. Большинство известных в настоящее время ферментов, называемых биологическими катализаторами, является белками. Эта функция белков, хотя и не оказалась уникальной, определяет скорость химических реакций в биологических системах.

Транспортная функция. Дыхательная функция крови, в частности перенос кислорода, осуществляется молекулами гемоглобина – белка эритроцитов.

В транспорте липидов принимают участие альбумины сыворотки крови.

Ряд других сывороточных белков образует комплексы с жирами, медью, железом, тироксином, витамином А и другими соединениями, обеспечивая их доставку в соответствующие органы-мишени.

Защитная функция. Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-антител в ответ на поступление в организм бактерий, токсинов, вирусов или чужеродных белков.

Высокая специфичность взаимодействия антител с антигенами (чужеродными веществами) по типу белок-белковое взаимодействие способствует узнаванию и нейтрализации биологического действия антигенов. Защитная функция белков проявляется и в способности ряда белков плазмы крови, в частности фибриногена, к свертыванию.

В результате свертывания фибриногена образуется сгусток крови, предохраняющий от потери крови при ранениях.

Сократительная функция. В акте мышечного сокращения и расслабления участвует множество белковых веществ.

Однако главную роль в этих жизненно важных процессах играют актин и миозин – специфические белки мышечной ткани.

Сократительная функция присуща не только мышечным белкам, но и белкам цитоскелета, что обеспечивает тончайшие процессы жизнедеятельности клеток (расхождение хромосом в процессе митоза).

Структурная функция. Белки, выполняющие структурную (опорную) функцию, занимают по количеству первое место среди других белков тела человека.

Среди них важнейшую роль играют фибриллярные белки, в частности коллаген в соединительной ткани, кератин в волосах, ногтях, коже, эластин в сосудистой стенке и др. Большое значение имеют комплексы белков с углеводами в формировании ряда секретов: мукоидов, муцина и т.

д. В комплексе с липидами (в частности, с фосфолипидами) белки участвуют в образовании биомембран клеток.

Гормональная функция. Обмен веществ в организме регулируется разнообразными механизмами.

В этой регуляции важное место занимают гормоны, синтезируемые не только в железах внутренней секреции, но и во многих других клетках организма (см. далее).

Ряд гормонов представлен белками или полипептидами, например гормоны гипофиза, поджелудочной железы и др. Некоторые гормоны являются производными аминокислот.

Питательная (резервная) функция. Эту функцию выполняют так называемые резервные белки, являющиеся источниками питания для плода, например белки яйца (овальбумины).

Основной белок молока (казеин) также выполняет главным образом питательную функцию.

Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

Можно назвать еще некоторые другие жизненно важные функции белков. Это, в частности, экспрессия генетической информации, генерирование и передача нервных импульсов, способность поддерживать онкотическое давление в клетках и крови, буферные свойства, поддерживающие физиологическое значение рН внутренней среды, и др.

Таким образом, из этого далеко не полного перечня основных функций белков видно, что указанным биополимерам принадлежит исключительная и разносторонняя роль в живом организме.

Если попытаться выделить главное, решающее свойство, которое обеспечивает многогранность биологических функций белков, то следовало бы назвать способность белков строго избирательно, специфически соединяться с широким кругом разнообразных веществ.

В частности, эта высокая специфичность белков (сродство) обеспечивает взаимодействие ферментов с субстратами, антител с антигенами, транспортных белков крови с переносимыми молекулами других веществ и т.д.

Это взаимодействие основано на принципе биоспецифического узнавания, завершающегося связыванием фермента с соответствующей молекулой субстрата, что содействует протеканию химической реакции. Высокой специфичностью действия наделены также белки, которые участвуют в таких процессах, как дифференцировка и деление клеток, развитие живых организмов, определяя их биологическую индивидуальность.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

Источник: http://www.xumuk.ru/biologhim/002.html

Сократительные белки: функции, примеры

Сократительная функция

Белки (полипептиды, протеины) представляют собой высокомолекулярные вещества, в состав которых входят альфа-аминокислоты, соединенные пептидной связью. Состав протеинов определяется в живых организмах генетическим кодом. Как правило, при синтезе используется набор из 20 стандартных аминокислот.

Классификация белков

Разделение протеинов осуществляется по разным признакам:

  • Форме молекулы.
  • Составу.
  • Функциям.

По последнему критерию белки классифицируются:

  • На структурные.
  • Питательные и запасные.
  • Транспортные.
  • Сократительные.

Структурные белки

К ним относят эластин, коллаген, кератин, фиброин. Структурные полипептиды участвуют в процессе формирования мембран клеток. Они могут создавать в них каналы или осуществлять иные функции.

Питательные, запасные протеины

Питательным полипептидом является казеин. За счет него растущий организм обеспечивается кальцием, фосфором и аминокислотами.

Запасными являются белки семян культурных растений, яичный белок. Они потребляются на этапе развития зародышей. В человеческом организме, как и у животных, протеины не откладываются в запас. Их необходимо регулярно получать с пищей, иначе вероятно развитие дистрофии.

Классическим примером таких белков является гемоглобин. В крови обнаруживаются и другие полипептиды, участвующие в перемещении гормонов, липидов и других веществ.

В мембранах клетки находятся протеины, обладающие способностью транспортировать ионы, аминокислоты, глюкозу и прочие соединения через клеточную мембрану.

Сократительные белки

Функции этих полипептидов связаны с работой мышечных волокон. Кроме того, они обеспечивают движение ресничек и жгутиков у простейших. Сократительные белки выполняют функцию транспортировки органелл внутри клетки. За счет их наличия обеспечивается изменение клеточных форм.

Примерами сократительных белков являются миозин и актин. Стоит сказать, что эти полипептиды обнаруживаются не только в клетках мышечных волокон. Сократительные белки выполняют свои задачи практически во всех тканях животных.

Особенности

В клетках обнаруживается индивидуальный полипептид – тропомиозин. Сократительный мышечный белок миозин является его полимером. Он образует комплекс с актином.

Сократительные белки мышц не растворяются в воде.

Скорость синтеза полипептидов

Ее регулируют тиреоидные и стероидные гормоны. Проникая в клетку, они связываются со специфическими рецепторами. Образованный комплекс проникает в клеточное ядро и связывается с хроматином. За счет этого повышается скорость синтеза полипептидов на генном уровне.

Активные гены обеспечивают усиление синтеза определенной РНК. Она выходит из ядра, направляется к рибосомам и активирует синтез новых структурных либо сократительных белков, ферментов или гормонов. В этом заключается анаболическое действие генов.

Между тем белковый синтез в клетках – процесс достаточно медленный. Он требует больших энергетических затрат и пластического материала. Соответственно, гормоны не в состоянии оперативно контролировать метаболизм. Ключевая их задача состоит в регуляции роста, дифференциации и развития клеток в организме.

Мышечное сокращение

Оно является ярким примером сократительной функции белков. В ходе исследований было установлено, что в основе сокращения мускулатуры лежит изменение физических свойств полипептида.

Сократительную функцию выполняет белок актомиозин, взаимодействующий с аденозинтрифосфорной кислотой. Эта связь сопровождается сокращением миофибрилл. Такое взаимодействие можно наблюдать вне организма.

К примеру, если на вымоченные в воде (мацерированные) волокна мышц, лишенные возбудимости, воздействовать раствором аденозинтрифосфата, начнется их резкое сокращение, аналогичное сокращению живой мускулатуры. Этот опыт имеет важнейшее практическое значение. Он доказывает тот факт, что для мышечного сокращения необходима химическая реакция сократительных белков с веществом, богатым энергией.

Действие витамина Е

С одной стороны, он является главным внутриклеточным антиоксидантом. Витамин Е обеспечивает защиту жиров и прочих легкоокисляемых соединений от окисления. Вместе с тем он выступает в качестве переносчика электронов и участвует в окислительно-восстановительных реакциях, которые связаны с запасанием высвобождаемой энергии.

Дефицит витамина Е вызывает атрофию мышечной ткани: содержание сократительного белка миозина резко уменьшается, и его заменяет коллаген – инертный полипептид.

Специфика миозина

Он считается одним из ключевых сократительных белков. На его долю приходится порядка 55 % от общего содержания полипептидов в мышечной ткани.

Из миозина состоят филаменты (толстые нити) миофибрилл. В молекуле присутствует длинная фибриллярная часть, имеющая двуспиральную структуру, и головки (глобулярные структуры). В составе миозина выделяют 6 субъединиц: 2 тяжелые и 4 легкие цепи, находящиеся в глобулярной части.

В качестве основной задачи фибриллярного участка выступает способность формировать пучки филаментов миозина или толстые протофибриллы.

На головках находятся активный участок АТФ-азы и актинсвязывающий центр. За счет этого обеспечивается гидролиз АТФ и связь с актиновыми филаментами.

Разновидности

Подвидами актина и миозина считаются:

  • Динеин жгутиков и ресничек простейших.
  • Спектрин в мембранах эритроцитов.
  • Нейростенин перисинаптических мембран.

К разновидностям актина и миозина можно также отнести полипептиды бактерий, ответственные за перемещение различных веществ в градиенте концентраций. Этот процесс называется также хемотаксисом.

Роль аденозинтрифосфорной кислоты

Если поместить нити актомиозина в раствор кислоты, добавить ионы калия и магния, можно увидеть, что они укорачиваются. При этом наблюдается расщепление АТФ.

Это явление свидетельствует о том, что распад аденозинтрифосфорной кислоты имеет определенную связь с изменением физико-химических свойств сократительного белка и, следовательно, с работой мышц.

Впервые этот феномен был выявлен Сцент-Дьиордьи и Энгельгардтом.

Синтез и распад АТФ имеют важнейшее значение в процессе превращения химической энергии в механическую. При распаде гликогена, сопровождающегося выработкой молочной кислоты, как и при дефосфорилировании аденозинтрифосфорной и креатинфосфорной кислот, участие кислорода не требуется. Этим объясняется способность изолированной мышцы функционировать в анаэробных условиях.

В волокнах мускулатуры, утомленных при работе в анаэробной среде, накапливаются молочная кислота и продукты, образовавшиеся при распаде аденозинтрифосфорной и креатинфосфорной кислот. В результате исчерпываются запасы веществ, при расщеплении которых выделяется необходимая энергия.

Если поместить утомленную мышцу в условия, содержащие кислород, она будет его потреблять. Некоторое количество молочной кислоты начнет окисляться. В результате образуются вода и углекислый газ. Высвобождающаяся энергия будет использоваться для ресинтеза креатинфосфорной, аденозинтрифосфорной кислот и гликогена из продуктов распада.

За счет этого мышца снова приобретет способность работать.

Отдельные свойства полипептидов можно объяснить только на примере их функций, т. е. их вклада в сложную деятельность. Среди немногочисленных структур, в отношении которых была установлена корреляция между функциями белков и органа, особого внимания заслуживает скелетная мышца.

Ее клетка активируется за счет нервных импульсов (мембранно-направленных сигналов). В молекулярном плане сокращение основывается на циклическом формировании поперечных мостиков благодаря периодическим взаимодействиям между актином, миозином и Mg-АТР. Кальцийсвязывающие белки и ионы Са выступают в качестве посредников между эффекторами и нервными сигналами.

Посредничество ограничивает скорость ответа на импульсы “включение/выключение” и предотвращает самопроизвольные сокращения.

Вместе с тем некоторые осцилляции (колебания) маховых мышечных волокон крылатых насекомых контролируют не ионы или аналогичные низкомолекулярные соединения, а непосредственно сократительные белки.

За счет этого возможны очень быстрые сокращения, которые после активации протекают самостоятельно.

Жидкокристаллические свойства полипептидов

При укорочении мышечных волокон изменяется период решетки, образованной протофибриллами. При вхождении решетки из тонких нитей в структуру из толстых элементов тетрагональную симметрию сменяет гексагональная. Это явление можно считать полиморфным переходом в жидкокристаллической системе.

Особенности механохимических процессов

Они сводятся к трансформации химической энергии в механическую. АТФ-азная активность митохондриальных клеточных мембран имеют сходство с актом иозиновой системы скелетной мускулатуры. Общие черты отмечаются и в их механохимических свойствах: они сокращаются под влиянием АТФ.

Следовательно, в мембранах митохондрий должен присутствовать сократительный белок. И он действительно там присутствует. Установлено, что сократительные полипептиды задействованы в митохондриальной механохимии. Однако выяснилось также, что значительную роль в процессах играет и фосфатидилинозитол (липид мембран).

Дополнительно

Молекула белка миозина не только способствует сокращению разных мышц, но и может участвовать в других внутриклеточных процессах. Речь, в частности, о перемещении органелл, прикреплении актиновых нитей к мембранам, формировании и функционировании цитоскелета и пр. Почти всегда молекула так или иначе взаимодействует с актином, являющимся вторым ключевым сократительным белком.

Было доказано, что молекулы актомиозина могут изменять длину под воздействием химической энергии, высвобождаемой при отщеплении от АТФ остатка фосфорной кислоты. Другими словами, именно этот процесс обуславливает сокращение мышц.

Система АТФ, таким образом, выступает как своего рода аккумулятор химической энергии. По мере надобности она превращается непосредственно в механическую при посредничестве актомиозина. При этом отсутствует промежуточный этап, характерный для процессов взаимодействия других элементов, – переход в тепловую энергию.

Источник: https://FB.ru/article/359252/sokratitelnyie-belki-funktsii-primeryi

Основные функции белка в организме человека

Сократительная функция

Каковы основные функции белка в организме человека?

Ответ

Белки поддерживают мышечную и костную массу, держат в работоспособности иммунную систему, предотвращают утомление.

Со школьной скамьи и даже ранее человечество слышит о белках. О них говорят медики, диетологи, учёные. С их точки зрения белки представляют собой наиболее сложные элементы в пище.

В клетках организма они составляют пятую часть всей массы. По закону физики «В ПРИРОДЕ НИЧТО НЕ БЕРЁТСЯ ИЗ НИОТКУДА, и никуда не исчезает, оно превращается из одного вида энергии в другую».

Это же можно сказать об образовании и дальнейшем превращении белков.

Белок переводится с греческого, как главный, важнейший, первый. Он так назван, потому что выполняет самые важные, родоначальные, ничем другим незаменимые функции в теле человека.

Из чего состоят белки

Белки состоят из аминокислот. Аминокислота, любая состоит из углерода, водорода, кислорода и азота в своём структурном соединении. Пища состоит из 22 аминокислот.

12 может синтезироваться в организме, и они называются заменимые. 10 аминокислот, остальных, из двадцати двух, незаменимы. Они в теле не производятся, только поступают с продуктами.

А вообще аминокислот большое количество в природе.

Белки ещё называют протеинами. Это название предложено в первой половине девятнадцатого века голландским химиком Г. Мульдером, выделив особый класс соединений с азотом.

Виды протеинов с точки зрения основных функций белка в организме человека

Протеины делятся на медленно и быстро усваиваемые, а также включающие оба вида.

Казеин ‒ белок, повышающий и удерживающий концентрацию аминокислот в крови, постепенно, примерно в течение шести, восьми часов.

Яичный белок тоже медленный, поддерживающий уровень аминокислот в крови длительно.

Сывороточный белок делает мощный и быстрый выброс аминокислот. Он действует около часа с предотвращением катаболизма или распада сложных веществ.

Соевый белок может усиливать и дополнять действие сывороточного белка.

Популярные быстрые протеины, усваиваемые от получаса до четырёх: концентрат лактозы, изолят (очищенный) и гидролизат (частично разрушенный ферментами).

Функции белка:

1. Строительная. Из белка состоят клетки, стенки-мембраны, внеклеточная структура. Белок ‒ родоначальник органической Земной жизни.

2. Катализаторная. Белки являются ферментами или энзимами и ускоряют биохимические процессы, которые в организме протекают в «тепличных» условиях, с низкими скоростями. Это температура около сорока градусов и нейтральная кислотность среды. Вот для каждой такой реакции нужны свои ферменты.

3. Транспортная. Биохимический процесс обеспечивается поступлением в клетки строительных материалов, энергии. Как осуществляется это поступление? Их транспортируют белки, потому что для других составляющих мембраны клеток, ограждённые двойным слоем липидов, непроницаемы. А транспортные белки вмонтированы в стенки клеток.

Гемоглобин обеспечивает транспортировку веществ от одних органов к другим.

Транспортный белок, альбумин, образовывает пенициллины, специальные комплексы, с жирными кислотами, аминокислотами, гормонами, с лекарствами.

4. Движущая. Движение тела человека, животных, туфелек и всего живого происходит благодаря специальному сократительному белку.

5. Защитная. При появлении чужеродных тел в организме, иммунная система отвечает выработкой лимфоцитов, уничтожающих эти частицы, плохие они или хорошие. Они состоят из патогенных бактерий, раковых клеток, чужеродных белков, вирусов. Чтобы распознать такой поступающий поток, существуют белки, называемые иммуноглобулинами, антителами. Их рождают бета–лимфоциты в кровеносной системе.

6. Структурная. Кроме высокоспециализированных функций белков, есть белки служащие просто в качестве структуры. Они обеспечивают прочность тканей с механической точки зрения. К ним относится коллаген, эластин. Они работают в коже, стенках кровеносных сосудов, лёгких.

7. Энергетическая. Белки ‒ топливо, самое выгодное. Они источники энергии организма.

Почему всем нужны белки

Потребность в белках совершенно не определяется просто одним возрастом или периодом жизни. Это ещё и наследственность, болезни, темперамент, нагрузки на организм, климат проживания и многого другого.

Наибольшая потребность в белке с рождения. Тело растёт, вес увеличивается быстро. Дети, вскормленные грудным молоком, получают всё необходимое из него. С возрастом наращивание тканей становится медленнее. В зрелом возрасте энергетическая функция белка побеждает строительную.

Почему пожилым людям нужны белки

В здоровом организме, при разнообразном достаточном питании сам организм вырабатывает заменимые аминокислоты, а незаменимые поступают с пищей.

Но, именно тот факт, что организм, особенно у людей старшего возраста, никогда не бывает здоровым, а возможность материальная падает, от такого круговорота возможностей человека и выработкой аминокислот, белка, часто в организме не хватает.

Это в свою очередь приводит к осложнениям в здоровье. Вот почему белковой пищи не будет много у обычного среднестатического гражданина.

Откуда берутся яды в организме

Но, вот какой парадокс. Известным учёным Бирхер-Беннером проводились исследования, выводом которых стало не уменьшение употребления белка с возрастом, а увеличение! Излишний белок, который не нужен организму, становится для него ядом.

Так образуются шлаки. К ним относятся мочевая кислота, мочевина, аммиак, креатинин и так далее. Их избыток задерживается в организме, а выведение затруднено. Они затрудняют все обменные процессы. Происходит старение организма.

Не от лет, а от шлаков.

Белки поступают в организм с пищей, распадаются в желудке и кишечнике под действием ферментов на составляющие аминокислоты, всасываются стенками кишечника. Затем происходит их доставка к клеткам организма. Избыток аминокислот разлагается с образованием шлаков, типа мочевины, выделяются с мочой или задерживаются. Всё зависит от здоровья организма.

Как справедлив метод интуитивного питания. При нём не надо напитывать себя белками, например. Просто прислушиваться к своему организму, он сам чего-то захочет или не захочет.

Полноценные и неполноценные белки

Белки, близкие по своему составу к белкам животного организма ‒ полноценные. Белки, в которых отсутствуют важные для жизни аминокислоты, триптофан, тирозин, цистин ‒ неполноценные.

Продукты с животным и соевым белком имеют примерно одинаковый в процентном отношении состав. Он равномерный и равнозначен человеческому. Является такой продукт полноценным.

Простые и сложные белки

Белки, состоящие только из аминокислот простые. Сложными белки будут в случае присоединения к молекуле металла, других групп типа сахара, жиров, витаминов. Например, гликопротеины, липопротеины.

Виды белка и основные его функции в организме человека

По группе присоединения белки имеют название и функциональные особенности.

Важно знать

Белки бывают ферментами и гормонами.

Гормоны, участвующие в регуляции физиологических процессов ‒ белки. Белки коллаген, кератин, являющиеся структурными, компоненты ткани костей, волос, ногтей.

Мышечные сократительные белки могут изменяться в длину при помощи химической энергии, преобразуемой в механическую.

Гормоны

Некоторая часть аминокислот образует гормоны, в переводе с греческого, движущие. Эти вещества выделяются прямо в кровь или лимфу из желёз внутренней секреции (гипофизом, щитовидной, паращитовидной, вилочковой железами, надпочечниками). Так как эндокринные железы не имеют выводных протоков, продукты их деятельности выводятся в кровяное и лимфатическое русло.

А гормон в переводе означает возбуждающий. Он возбуждает или угнетает деятельность организма. Например, рост, метаболизм (способность к усвоению сложных молекул). Повышение активности организма, выделение адреналина стимулируется белком.

Фермент ‒ закваска, ускоряющая химические реакции.

Коллаген

Коллаген занимается регенерацией клеток глаз и сосудов крови. Это основное вещество волокон, хрящей, костей, соединительной ткани.

Регенерация ‒ процесс обратного превращения отработанных продуктов в исходные, то есть восстановление организмом утраченного в теле.

Антитела

Антитела, связывающие и нейтрализующие токсины тоже белки.

Рецепторы

Часть белков реагируют на свет, запах, выполняют в органах функции рецепторов, воспринимают раздражение.

Регуляторы

Белки на мембране клеток и внутри их служат регуляторами.

Последствия недостатка белка и отсутствия основных функций белка в организме человека

Меню завтрака должно включать нежирное мясо, йогурт, творог, каши, овощи.

Недостаток белков приводит к отёчности, в связи с задержкой избытка воды в организме. Так как одна из функций белков ‒ водносолевой обмен, осуществление контроля над выведением лишней жидкости.

При жёстких фруктовых, овощных, крупяных диетах, поступает мало белка. Те же белки, что всё-таки поступают в организм всасываются хуже в кровь.

Питание без белков приводит к заболеваниям со смертельным исходом.

Функции белка в организме имеют широкий диапазон от обеспечения протекания химических реакций до содержания в норме его структуры.

Доброго здоровья, достаточного белка в организме и потреблении, как в молодом, таки в старшем возрасте!

Амара Кей.

Источник: https://zen.yandex.ru/media/id/5ce71b68752e5b00b25b7c3a/5cfff1fbd0c8c500ac6a2932

Функции белков. урок. Биология 10 Класс

Сократительная функция

Тема: Основы цитологии

Урок: Функции белков

На предыдущем уроке, мы с вами рассмотрели аминокислоты, строение белков; показали уровни организации белковой молекулы. Белки имеют первичную, вторичную, третичную и четвертичную структуру.

На этом уроке мы с вами разберем классификацию белков по форме молекулы, а также охарактеризуем некоторые функции белков.

По форме молекулы белки делятся на фибриллярные белки, или волокнистые; глобулярные белки (Рис. 1), то есть белковая молекула имеет форму глобулы (шара); и промежуточные белки, то есть белки фибриллярной формы, но при этом растворимы в воде.

Рис. 1. Схематическое изображение третичной и четвертичной структуры белков

Фибриллярные белки.

Наиболее важна для них вторичная структура. Третичная структура складчатая. Обладают высокой механической прочностью, нерастворимы в воде.

Фибриллярные белки представляют собой длинные параллельные полипептидные цепи, скреплённые друг с другом поперечными сшивками, образуют длинные волокна, или слоистые структуры (Рис. 2).

Как правило, фибриллярные белки выполняют в организме структурные функции.

Рис. 2. Фибриллярные белки

Глобулярные белки.

Это полипептидные цепи, свёрнутые в компактные глобулы. В отличие от фибриллярных белков, они растворимы, легко образуют коллоидные суспензии, выполняют различные функции в клетке (Рис. 3).

Рис. 3. Примеры глобулярных белков

Промежуточные белки имеют фибриллярную форму, но растворимы в воде.

Белки выполняют целый ряд функций, как в клетке, так и в организме. Функция определяется структурой и формой белковой молекулы.

В первую очередь эту функцию выполняют белки, которые входят в состав биологических мембран.

Кроме этого к структурным белкам относятся белки межклеточного матрикса, такие как коллаген и ретикулин. Одним из основных компонентов связок является эластин, кожи – коллаген. Коллаген также входит в состав костей, сухожилий, хряща (Рис. 4).

Волосы и ногти в основном состоят из очень прочного белка – кератина. Кстати кератин, является ещё компонентом перьев.

Рис. 4. Структурные белки

Некоторые клетки организма способны сокращаться и перемещаться, благодаря наличию сократительных белков. К сократительным белкам относятся актин и миозин, которые вызывают сокращение мышц и сокращение мышечной ткани (Рис. 5).

Рис. 5. Сократительные белки актин и миозин

Другим белком, обеспечивающим перемещение клеток, является тубулин, входящий в состав микротрубочек (основных компонентов ресничек и жгутиков клетки) (Рис. 6). Как и предыдущие белки, они имеют фибриллярную структуру.

Рис. 6. Белок тубулин, обеспечивающий движение компонентов клетки

Ряд белков выполняет функции переноса веществ из одного компартмента клетки в другой или между органами целого организма. Например, гемоглобин переносит кислород от легких к тканям, и углекислый газ от тканей в легкие. Эти белки имеют глобулярную структуру (см. видео).

В крови есть специальные транспортные белки – альбумины, которые переносят различные вещества. Сывороточный альбумин крови переносит как биологические активные вещества, так и жирные кислоты, и липиды.

Белки-переносчики осуществляют перенос веществ через клеточные мембраны (см. видео).

Специфические белки выполняют так называемую защитную функцию, они предохраняют наш организм от вторжения чужеродных организмов или чужеродных белков и от различных повреждений. К таким защитным белкам относятся антитела. То есть, они вырабатываются в ответ на чужеродные воздействия. Они взаимодействуют с микроорганизмами, попавшими в кровь, и их инактивируют.

Другие белки – интерфероны, они специфически связываются с вирусами, инактивируют их и не дают возможность воссоздать им свою структуру, то есть размножиться внутри организма человека.

Фибриноген и тромбин предохраняют организм от кровопотери, образуя тромб. Фибриноген является примером белка промежуточного типа, поскольку он имеет фибриллярную структуру, но при этом растворим в воде (Рис. 7).

Рис. 7. Нити фибрина тромба, оплетающие эритроциты, под микроскопом

Многие живые существа для обеспечения защиты выделяют белки – токсины, которые в большинстве случаев представляют сильнейшие яды. Токсические белки представлены токсинами ядов змей, скорпионов, пчёл.

Они характеризуются довольно низкой для белков молекулярной массой. Токсины растений и микроорганизмов более разнообразны по форме и молекулярной массе.

Наиболее распространенные из токсинов микроорганизмов – это дифтерийный и холерный токсин.

Некоторые организмы способны вырабатывать антитоксины, которые подавляют действие токсических веществ.

В организме человека существует ряд белков, которые выполняют регуляторную функцию. К ним относятся различные гормоны белково-пептидной природы. Одним из таких гормонов является инсулин. Он вырабатывается поджелудочной железой и регулирует уровень глюкозы в крови.

Кроме этого к таким гормонам относится кальцитонин, который регулирует уровень кальция в крови костной ткани, а также так называемый соматотропный гормон, или соматотропин, который влияет на рост и развитие человека.

Белки могут быть запасными питательными веществами. Например, альбумин куриного яйца, казеин молока. В семенах многих растений, белки также могут выполнять запасающую функцию.

Белки могут выполнять в клетке или организме энергетическую функцию, поскольку при расщеплении одного грамма белков образуется 17,6 кДж энергии. Для этой цели белки используются в исключительных случаях – в качестве источника энергии обычно используется либо углеводы, либо липиды.

Таким образом, мы начали рассмотрение различных функций белков, а на следующем занятии обсудим белки-ферменты.

Настоящая голубая кровь

В живых организмах медь была обнаружена в 1808 году французским химиком Луи Вокленом. Он является основоположником химического анализа.

Гемоцианин, медьсодержащий белок кальмаров, улиток, раков и пауков. Так же, как и гемоглобин позвоночных, он переносит кислород, при этом кровь окрашивается в голубой цвет, и наблюдается флуоресценция. С окисью углерода гемоцианин, так же как и гемоглобин, взаимодействует обратимо, образуя бесцветное соединение.

Способность к переносу кислорода у гемоцианина значительно ниже, по сравнению с гемоглобином. Поэтому у высших позвоночных животных в крови наблюдается гемоглобин, а не гемоцианин.

В художественной литературе часто встречается словосочетание «голубая кровь». Оказывается, это выражение пришло к нам из Испании. В Испании людей благородного, или аристократического происхождения, отличала белая кожа с просвечивающими синеватыми сосудами – венами. Отсюда и название «голубая кровь». И к настоящей голубой крови подводных обитателей это не имеет никакого отношения.

Интерфероны

Интерфероны – это белки, которые вырабатываются в ответ на проникновение в организм различных чужеродных агентов, в том числе и вирусных частиц. Интерфероны блокируют (инактивируют) вирусы, то есть они запускают химические реакции, которые прекращают воспроизведение ДНК- и РНК-содержащих вирусов.

Интерфероны имеют широкий спектр действия:

противовирусное действие;

противоопухолевое действие;

радиопротекторное действие;

иммуномодулирующее действие.

В связи с этим интерфероны широко используются для лечения различных вирусных заболеваний (например, заболевания гриппа, ОРВИ, заболевания герпеса), используются в комплексной терапии такого сложного заболевания как гепатит, используются в комплексной терапии для лечения СПИДа, а также, поскольку они обладают противоопухолевым действием, в комплексной терапии для лечения раковых заболеваний.

Кроме этого, интерфероны используются и для лечения различных бактериальных инфекций, и даже грибковых. Обычно препарат «интерферон» вводится путём внутривенных инъекций, например, при лечении различных раковых заболеваний, при лечении гепатита.

Если у человека наблюдается герпес, то обычно смазывается поражённый участок.

При различных формах простудных заболеваний, интерферон используется в виде капель в нос.

Соматотропный гормон

Соматотропин, или соматотропный гормон, контролирует рост и развитие организма как животных, так и человека. Соматотропин вырабатывается передней долей гипофиза и секретируется в кровь. Он является полифункциональным гормоном. Основной дефект развития организма человека и животных, в условии недостаточности соматотропина – задержка роста костей.

Избыток соматотропина в растущем организме может приводить к гигантизму, а у взрослых к ненормальному увеличению отдельных органов и тканей.

Домашнее задание

1. Какие вещества называют белками?

2. Из чего состоят белки?

3. Какие классификации белков вам известны?

4. Перечислите основные функции белков.

5. Приведите примеры белков, которые выполняют различные функции.

6. Сравните функции гемоглобина и гемоцианина.

7. Каковы функции интерферона?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Википедия (Источник).

2. Школа цифрового века (Источник).

3. Портал для семейного просмотра (Источник).

4. Элементы (Источник).

5. Химик (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Источник: https://interneturok.ru/lesson/biology/10-klass/bosnovy-citologii-b/funktsii-belkov

ОтделКардиологии
Добавить комментарий