Функции резистивных сосудов

Функциональные группы сосудов

Функции резистивных сосудов

Все сосуды в зависимости от выполняемой ими функции можно подразделить на 6 групп:

1. амортизирующие сосуды (сосуды эластического типа)

2. резистивные сосуды

3. сосуды-сфинктеры

4. обменные сосуды

5. емкостные сосуды

6. шунтирующие сосуды.

К амортизизиующим сосудамотносятся артерии с большим содержанием эластических волокон – аорта, легочная артерия и при­легающие к ним участки больших артерий. Эффект амортизации сос­тоит в сглаживании периодических систолических волн кровотока. Такой эффект амортизации обусловлен расширением сосуда вследствие его эластичности.

Резистивные сосуды – это сосуды, оказывающие наибольшее со­противление кровотоку. К ним относятся концевые артерии, артериолы и в меньшей степени капилляры и венулы. Артериолы представляют собой тонкие сосуды (диаметром 15— 70 мкм).

Стенка этих сосудов содержит толстый слой циркулярно расположенных гладких мышечных клеток, при сокращении кото­рого просвет сосуда может значительно уменьшаться. При этом резко повышается сопротивление артериол. Изменение сопротивле­ния артериол меняет уровень давления крови в артериях.

В случае увеличения сопротивления артериол отток крови из артерий уменьшается и давление в них повышается. Падение тонуса артериол увеличивает отток крови из артерий, что приводит к уменьшению артериального давления. В работающем органе тонус артериол уменьшается, что обеспечивает повышение притока крови.

Чтобы общее артериальное давление при этом не снизилось в других (неработающих) органах, тонус артериол повышается.

В сосудах обменного типа происходит обмен между кровью и межтканевой жидкостью. К ним относят капилляры. Они не способны к сокращению просвета.

Емкостные сосуды – это вены. Благодаря высокой растяжимости они способны вмещать, а затем и выбрасывать большие объемы крови без существенных изменений каких-либо параметров кровотока. В связи с этим они могут играть роль депо крови.

В связи с тем что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желудочков и уменьшаются во время диастолы. В капиллярах и венах кровоток постоянен, т. е. линейная скорость его постоянна. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки. Аорта и крупные сосуды, богатые эластической тканью, обладают значительной упругостью.

Пульс. Ритмические толчки, ощущаемые пальцем при прикосновении к любой доступной ощупывании артерии (на виске, у угла челюсти, на шее, на кисти рук, в паху, у щиколотки и т.д.) называется пульсом. При записи кривой пульса (сфигмограммы) видно, что пульс представляет собой сложное колебание стенки сосуда, слагающееся из нескольких подъемов и спусков разной высоты.

Непосредственный механизм пульса аорты и пульса артерии среднего калибра различен. Пульс аорты представляет собой колебания артериальной стенки, создаваемые прямым давлением на них крови, выброшенной сердцем во время систолы.

Пульс артерий среднего калибра, напротив, не возникает в данном месте, и представляет собою волну эластического колебания сосудистых стенок, возникшую в аорте и распространяющуюся до периферической артерии. Скорость, с которой пульсовая волна распространяется от центра к периферии, зависит от растяжимости сосуда.

В более растяжимой аорте эта скорость равна 3-5 м/сек, а в артериях конечностей – 7-15 м/сек.

Свойства пульса. По пульсу судят о сердечной деятельности и ее нарушениях, определяя каждый раз ряд свойств пульса. В традиционной китайской медицине их насчитывают более 200. Европейская медицина выделяет 5 основных свойств:

1. Частота пульса – число толчков пульса в минуту. Указывает на частоту сердечных сокращений. Бывает пульс частый (тахикардия) и редкий (брадикардия).

2. Ритм пульса. О ритме судят по длительности (равномерности) промежутков между пульсовыми ударами. Бывает пульс ритмичный и аритмичный.

3. Быстрота пульса. По скорости подъема и скорости падения пульсовой волны составляют представление о быстроте пульса. Пульс бывает быстрый и медленный. Быстрый подъем и быстрое падение пульсовой волны отмечается, например, при недостаточности клапанов аорты.

4. Наполнение. По высоте подъема артериальной стенки (т.е. по амплитуде пульсовой волны) судят о величине, или наполнении пульса. Это свойство зависит от систолического объема крови.

5. Напряжение пульса. О нем судят по силе, с которой следует сдавить артерию, чтобы пульс исчез. Напряжение пульса зависит от величины кровяного давления. Различают пульс твердый и мягкий. Твердый, или напряженный пульс бывает, например, при гипертонии, мягкий – при кровотечении, снижении объема циркулирующей крови.

Методы регистрации АД. У человека кровяное давление измеряют бескровным способом по Короткову. Он основан на измерении давления, которому нужно подвергнуть стенку данного сосуда, чтобы прекратить ток крови в нем.

Перерыв в токе крови по сосуду определяют или по исчезновению пульса ниже места пережатия (Рива-Роччи) или по появлению и исчезновению так называемых тонов Короткова.

Обследуемому накладывают на плечо полую резиновую манжету, которая соединена с резиновой грушей, служащей для нагнетания воздуха, и с манометром. При надувании манжета сдавливает плечо, а манометр показывает величину этого давления.

Для измерения давления крови с помощью этого прибора, по предложению Н. С. Короткова, вы­слушивают сосудистые тоны, возникающие в артерии к периферии от наложенной на плечо манжеты.

Кровь, если артерия не сдавлена или сдавлена очень мало, течет по артерии беззвучно. Поэтому, если на руку надета не надутая манжета сфигмоманометра, то никаких звуков не слышно.

Если же давление в манжете выше диастолического, то в момент систолы кровь проходит, а во время диастолы – нет, то возникает прерывистость в движении и появляются тоны Короткова, синхронные с ритмом сердца.

Когда давление в манжете больше систолического – звуки вновь исчезают, так как тока крови нет.

Если перед выслушиванием накачать в манжету давление заведомо больше систолического, то при выпускании воздуха тоны появляются, когда давление в манжете становится меньше систолического, но больше диастолического. В этот момент манометр показывает систолическое давление. Когда тоны исчезают вовсе – давление равно диастолическому.

В плечевой артерии здоровых людей в возрасте от 10 до 15 лет АД систолическое давление равно 103-110 мм рт ст, в возрасте 16-40 лет – 113-126 мм рт ст, старше 50 лет – 135-140 мм рт ст.

У новорожденных систолическое давление 40 мм рт ст, однако уже через несколько дней оно повышается до 70-80 мм. Диастолическое давление у взрослого равно в норме 60-85 мм рт ст.

Пульсовое составляет в норме 35-50 мм.

Факторы, изменяющие артериальное давление. На уровень артериального кровяного давления оказывает влияние ряд факторов. После приема пищи наблюдается небольшое (на 6-8 мм) повышение систолического давления.

Эмоциональное возбуждение (гнев, испуг) значительно повышают АД, преимущественно систолическое. Это повышение обусловлено усиленной деятельностью сердца, а также сужением сосудистого русла.

Изменения эти наступают частью рефлекторно, частью под влиянием гуморальных сдвигов – поступления адреналина в кровь.

Кроме систолического, диастолического и пульсового артериального давления определяют так называемое среднее артериальное давление.

Оно представляет собой ту среднюю величину давления, при которой в отсутствие пульсовых колебаний наблюдается такой же гемодинамический эффект, как и при естественном пульсирую­щим давлении крови, т. е.

среднее артериальное давление — это равнодействующая всех изменений давления в сосудах. Среднее давление в одной и той же артерии представляет собой более постоянную величину, а систолическое и диастолическое изменчивы.

При физической работе давление резко возрастает, главным образом за счет усиления деятельности сердца. Систолическое давление может доходить до 180-200 мм. В большинстве случаев при этом повышается и диастолическое давление (до 100-110 мм), но в меньшей степени, чем систолическое, поэтому пульсовое давление возрастает, что служит показателем увеличения систолического объема.

Практически важно то обстоятельство, что у людей с недостаточной функциональной способностью сердечно-сосудистой системы наблюдается незначительное повышение систолического и большое – диастолического, при этом пульсовое давление уменьшается. Таким людям запрещено тяжелое физическое напряжение. По окончании физической работы у здоровых людей АД быстро возвращается к норме.

У некоторых людей наблюдается стойкое изменение артериального давления (гипертензия – повышение, гипотензия – понижение). Различают гипертензии сердечного и сосудистого происхождения.

Первые обусловлены изменением интенсивности работы сердца, вторые – изменениями периферического сопротивления сосудов, особенно артериол.

О наличии гипотонии у взрослого говорят при снижении систолического АД до 110 мм.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/1_93738_funktsionalnie-gruppi-sosudov.html

Классификация кровеносных сосудов по функциям

Функции резистивных сосудов

5 звезд – построен на 20817 просмотрах

Сосуды в организме выполняют различные функции. Специалисты выделяют шесть основных функциональных групп сосудов: амортизирующие, резистивные, сфинктеры, обменные, емкостные и шунтирующие.

Амортизирующие сосуды

К группе амортизирующих относятся эластические сосуды: аорта, легочная артерия, примыкающие к ним участки крупных артерий. Высокий процент эластических волокон позволяет этим сосудам сглаживать (амортизировать) периодические систолические волны кровотока. Данное свойство получило название Windkessel-эффект. В немецком языке это слово означает «компрессионная камера».

Способность эластических сосудов выравнивать и увеличивать ток крови обуславливается возникновением энергии эластического напряжения в момент растяжения стенок порцией жидкости, то есть переходом некоторой доли кинетической энергии давления крови, которое создает сердце во время систолы, в потенциальную энергию эластического напряжения аорты и крупных артерий, отходящих от нее, выполняющего функцию поддержания кровотока во время диастолы.

Более дистально расположенные артерии относятся к сосудам мышечного типа, так как содержат больше гладкомышечных волокон. Гладкие мышцы в крупных артериях обуславливают их эластические свойства, при этом не изменяя просвета и гидродинамического сопротивления данных сосудов.

Резистивные сосуды

К группе резистивных сосудов принадлежат концевые артерии и артериолы, а также капилляры и венулы, но в меньшей степени. Прекапиллярные сосуды (концевые артерии и артериолы) имеют относительно малый просвет, их стенки обладают достаточной толщиной и развитой гладкой мускулатурой, поэтому способны оказывать наибольшее сопротивление кровотоку.

В многочисленных артериолах вместе с изменением силы сокращения мышечных волокон изменяется диаметр сосудов и, соответственно, общая площадь поперечного сечения, от которой зависит гидродинамическое сопротивление.

В связи с этим можно сделать вывод, что основным механизмом распределения системного дебита крови (сердечного выброса) по органам и регулирования объемной скорости кровотока в разных сосудистых областях служит сокращение гладкой мускулатуры прекапиллярных сосудов.

На силу сопротивления посткапиллярного русла влияет состояние вен и венул. От соотношения прекапилярного и посткапиллярного сопротивления зависит гидростатическое давление в капиллярах и, соответственно, качество фильтрации и реабсорбции.

Сосуды-сфинктеры

Схема микроциркуляторного русла выглядит следующим образом: от артериолы ответвляются более широкие, чем истинные капилляры, метаартериолы, которые продолжаются основным каналом.

В области ответвления от артериолы стенка метаартериолы содержит гладкомышечные волокна.

Такие же волокна присутствуют в области отхождения капилляров от прекапиллярных сфинктеров и в стенках артериовенозных анастомозов.

Таким образом, сосуды-сфинктеры, представляющие собой конечные отделы прекапиллярных артериол, посредством сужения и расширения регулируют количество функционирующих капилляров, то есть от их деятельности зависит площадь обменной поверхности данных сосудов.

Обменные сосуды

К обменным сосудам относятся капилляры и венулы, в которых происходит диффузия и фильтрация. Данные процессы играют важную роль в организме. Капилляры не могут самостоятельно сокращаться, их диаметр изменяется вследствие колебания давления в сосудах-сфинктерах, а также пре- и посткапиллярах, являющихся резистивными сосудами.

Емкостные сосуды

В организме человека нет так называемых истинных депо, в которых задерживается кровь и выбрасывается по мере необходимости. Например, у собаки таким органом служит селезенка.

У человека функцию резервуаров крови выполняют емкостные сосуды, к которым относятся главным образом вены.

В замкнутой сосудистой системе при изменении емкости какого-либо отдела происходит перераспределение объема крови.

Вены обладают высокой растяжимостью, поэтому при вмещении или выбросе большого объема крови не изменяют параметры кровотока, хотя прямо или косвенно влияют на общую функцию кровообращения. Некоторые вены при пониженном внутрисосудистом давлении имеют просвет в форме овала. Это позволяет им вмещать дополнительный объем крови без растяжения, а изменяя уплощенную форму на более цилиндрическую.

Наибольшую емкость имеют печеночные вены, крупные вены в области чрева и вены подсосочкового сплетения кожи. Всего они вмещают свыше 1000 мл крови, которую выбрасывают при необходимости. Способностью кратковременно депонировать и выбрасывать большое количество крови также обладают легочные вены, параллельно соединенные с системным кровообращением.

Шунтирующие сосуды

К шунтирующим сосудам относятся артериовенозные анастомозы, которые присутствуют в некоторых тканях. В открытом виде они способствуют уменьшению либо полному прекращению кровотока через капилляры.

Кроме этого, все сосуды в организме делятся на присердечные, магистральные и органные. Присердечные сосуды начинают и заканчивают большой и малый круги кровообращения. К ним относятся эластические артерии – аорта и легочный ствол, а также легочные и полые вены.

Функция магистральных сосудов заключается в распределении крови по организму. К сосудам данного типа относятся крупные и средние мышечные экстраорганные артерии и экстраорганные вены.

Органные кровеносные сосуды предназначены для обеспечения обменных реакций между кровью и основными функционирующими элементами внутренних органов (паренхимой). К ним относятся внутриорганные артерии, внутриорганные вены и капилляры.

про сосудистую систему человека:

Источник: http://nashe-serdce.ru/anatomia/klassifikacija-krovenosnyh-sosudov

Функции резистивных сосудов

Функции резистивных сосудов

К резистивным сосудам относятся концевые артерии , артериолы и капилляры и венулы . Именно концевые артерии и артериолы, т.е. прекапиллярные сосуды , обладающие относительно малым просветом и толстыми стенками с развитой гладкой мускулатурой оказывают наибольшее сопротивление кровотоку.

Изменения степени сокращения мышечных волокон этих сосудов приводят к отчетливым изменениям их диаметра и, следовательно, общей площади поперечного сечения. Именно сокращения гладких мышц прекапиллярных сосудов служит основным механизмом регуляции объемной скорости кровотока в различных сосудистых областях, а также перераспределения сердечного выброса по разным органам.

Посткапиллярное сопротивление регулируется венулами и венами. Соотношение между прекапиллярным и посткапиллярным сопротивлением влияет на величину гидростатического давления в капиллярах и, следовательно, на скорость фильтрации и всасывания.

Источник: http://medbiol.ru/medbiol/physiology/0004a5a1.htm

Классификация сосудов по функциональным признакам

Функциональные свойства сосудов зависят от особенностей строения сосудистой стенки, диаметра и расположения их относительно сердца, степени оксигенации находящейся в них крови, наличия и толщины слоев эластических и гладкомышечных волокон, плотности и непрерывности контактов между эндотелиальными клетками, покрывающими внутреннюю поверхность сосудов.

Сосуды большого и малого кругов кровообращения, в зависимости от выполняемой ими функции, можно разделить на несколько групп:

1) сосуды эластического типа ( например аорта);

2) смешенного типа (магистральные артерии);

3) мышечного типа (артериолы).

II. Обменные сосуды (капилляры).

III. Вены (емкостные сосуды).

В отдельную группу можно выделить артерио-венулярные шунты. Шунты соединяют артериолы и венулы, проводя кровь в обход капилляров. Важным их свойствам является крайне низкое, практически равное 0, сопротивление.

Благодаря этому при открытии сфинктеров шунтов кровь устремляется не в капилляры, где сопротивление максимально, а движется через шунты. Тем самым организм получает возможность регулировать выраженность обменных процессов в каждом отдельно взятом органе.

В шоковых состояниях может происходить нарушение регуляции тонуса сфинктеров шунтов и их тотальное открытие. В этом случае общее сопротивление (R) току крови падает до 0, и артериальное давление также критически снижается (Р=QR=Qx0=0 мм рт. ст.).

Понятно, что такое шоковое падение давления невозможно скорректировать введением кровозамещающих растворов, т.к. произведение любой величины Q на 0 будет равно 0 мм рт. ст.

Любой кровеносный сосуд служит для проведения крови, т.е. это неспецифическая функция любого отдела кровеносной системы. Артериолы называют резистивными сосудами, т.к. их специфическая функция – создание сопротивления току крови с целью формирования (и регуляции) артериального давления.

Капилляры являются обменными сосудами, потому что только в них происходит обмен веществ между кровью и тканями. Особая функция вен – депонирование крови. Они имеют большую емкость, 3/4 всей крови содержится в венах в состоянии, выключенном из кровотока.

Даже незначительное уменьшение емкости вен может значительно увеличить возврат крови к сердцу и через него в большой круг кровообращения, способствуя тем самым повышению артериального давления. Поэтому вены называют емкостными сосудами.

Артерии эластического типа – это сосуды. с большим содержанием в их стенке эластических волокон: аорта, легочная артерия, крупные артерия.

Хорошо выраженные эластические свойства таких сосудов, в частности, аорты обусловливают амортизирующий эффект (эффект «компрессионной камеры»), который выражается в амортизации (сглаживании) резкого подъема артериального давления во время систолы.

Во время диастолы желудочков, после закрытия аортальных клапанов, под влиянием эластических сил аорта и крупные артерии восстанавливают свой просвет и проталкивают находящуюся в них кровь, обеспечивая, тем самым, непрерывный ток крови. Как отмечалось выше (см.

пульс) именно благодаря эластике артерий формируется пульсовая волна, значение которой заключается в формировании диастолического давления. Если бы крупные артерии не имели эластического слоя, то во время диастолы давление в них падало бы до 0 и движение крови останавливалось. Т.о. эластические волокна артериальных сосудов поддерживают движение крови в диастолу, проталкивая ее в другие отделы кровеносной системы тогда, когда сердце расслабляется.

Артерии мышечного типа – это артериолы (прекапилляры). Стенки этих сосудов состоят преимущественно из гладкомышечных клеток (не считая адвентиции и интимы, которые имеются у любого сердца) благодаря чему они оказывают наибольшее сопротивление кровотоку.

Это особенно относится к артериолам, которые называют «кранами» артериальной системы. Их тонус постоянно изменяется, что приводит к изменению их диаметра и, следовательно, общей площади поперечного сечения, а значит и значительного изменения сопротивления кровотоку. Т.о.

артериолы оказываются «удобным механизмом» регуляции артериального давления (см. ранее объяснения высокой зависимости R от r).

Прекапиллярные сосуды сопротивления, таким образом, влияют на отток крови из артериального русла. Особое место среди сосудов сопротивления занимают прекапиллярные сфинктеры (сосуды-сфинктеры) – это конечные отделы прекапиллярных артериол, в стенке которых содержится больше, чем в артериоле, мышечных элементов.

От функционального состояния прекапиллярных сфинктеров зависит ток крови через капилляры. Кровоток может быть настолько перекрыт, что через капилляры не проходят форменные элементы, движется только плазма («плазменные капилляры»). Если кровоток через капилляр полностью перекрывается, то капилляр перестает функционировать, он выключается из кровообращения.

Таким образом, прекапиллярные сфинктеры, изменяя число функционирующих капилляров, изменяют площадь обменной поверхности.

Артерии смешанного типа содержат в своей стенке как гладкомышечные клетки, так и эластические волокна. К таким сосудам относятся магистральные артерии, например, сонная, бедренная, лучевая, локтевая, подключичная и мн. др. Они пусть и в меньшей степени, чем артериолы, способны влиять на величину артериального давления, а так же, как и аорта, формировать и проводить пульсовую волну.

Отметим, что пульсовая волна возникает в аорте, распространяется по магистральным артериям и затухает в артериолах, в стенках которых эластика истончается и исчезает.

Обменные сосуды или капилляры, осуществляют обменные процессы между кровью и межклеточной жидкостью (транссосудистый обмен). Интенсивность транссосудистого обмена зависит от скорости кровотока через эти сосуды и давления, под которым находится протекающая кровь.

Давление здесь относительно давления в артериях не высокое –мм рт. ст. Капилляры не способны к активному изменению своего диаметра, т.к. не содержат гладкомышечных клеток, а их стенка состоит только из фенестрированного эпителия.

Давление в капиллярах меняется в зависимости от состояния прекапиллярных сфинктеров и посткапиллярных венул, вен.

Артерио-венозные анастомозы (шунтирующие сосуды) – это сосуды, соединяющие артериальную и венозную части сосудистого русла, минуя капилляры. Различают два типа артерио-венозных анастомозов:

1) соединяющие каналы замыкательного типа;

2) гломерулярный или клубочковый тип.

Функции артерио-венозных анастомозов:

1) регулируют ток крови через орган;

2) участвуют в регуляции общего и местного давления крови;

3) регулируют кровенаполнение органа;

4) регулируют венозный кровоток;

5) обеспечивают артериолизацию венозной крови;

6) обеспечивают мобилизацию депонированной крови;

7) регулируют ток межтканевой жидкости в венозном русле;

8) влияют на общий кровоток через изменение местного тока жидкости и крови;

9) участвуют в терморегуляции.

Емкостные сосуды (вены) – в своей стенке содержат (помимо наружного – адвентициального, среднего – мышечного слоев и внутреннего слоя – интима) особый тип соединительнотканных структур – коллаген. Особым свойством коллагена является его способность растягиваться, сохраняя приданную форму.

Тогда как эластин артерий после растяжения упруго сжимается, возвращаясь к исходному состоянию. В венах эластических волокон нет, здесь нет пульсовой волны. Но благодаря коллагену вены могут, растягиваясь, принимать большое количество крови, и сохранять его в себе, выключая тем самым из кровотока, т.е. депонировать кровь. Т.о.

емкостные сосуды (вены) обладают данным свойством благодаря коллагену.

Источник: http://helpiks.org/.html

Классификация кровеносных сосудов по функциям

Сосуды в организме выполняют различные функции. Специалисты выделяют шесть основных функциональных групп сосудов: амортизирующие, резистивные, сфинктеры, обменные, емкостные и шунтирующие.

Что такое сосуды?

Сосуды – трубковидные образования, которые простилаются по всему телу человека и по которым движется кровь. Давление в системе кровообращения очень велико, поскольку система замкнута. По такой системе кровь достаточно быстро циркулирует.

Источник: http://chernovsky.ru/funkcii-rezistivnyh-sosudov/

ОтделКардиологии
Добавить комментарий